Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.855
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724526

RESUMEN

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/fisiopatología , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatología , Pronóstico , Niño , Isocitrato Deshidrogenasa/genética , Mutación
2.
Nat Rev Dis Primers ; 10(1): 34, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724549
3.
Clin Neurophysiol ; 161: 256-267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521679

RESUMEN

OBJECTIVE: We investigated the feasibility of recording cortico-cortical evoked potentials (CCEPs) in patients with low- and high-grade glioma. We compared CCEPs during awake and asleep surgery, as well as those stimulated from the functional Broca area and recorded from the functional Wernicke area (BtW), and vice versa (WtB). We also analyzed CCEP properties according to tumor location, histopathology, and aphasia. METHODS: We included 20 patients who underwent minimally invasive surgery in an asleep-awake-asleep setting. Strip electrode placement was guided by classical Penfield stimulation of positive language sites and fiber tracking of the arcuate fascicle. CCEPs were elicited with alternating monophasic single pulses of 1.1 Hz frequency and recorded as averaged signals. Intraoperatively, there was no post-processing of the signal. RESULTS: Ninety-seven CCEPs from 19 patients were analyzed. There was no significant difference in CCEP properties when comparing awake versus asleep, nor BtW versus WtB. CCEP amplitude and latency were affected by tumor location and histopathology. CCEP features after tumor resection correlated with short- and long-term postoperative aphasia. CONCLUSION: CCEP recordings are feasible during minimally invasive surgery. CCEPs might be surrogate markers for altered connectivity of the language tracts. SIGNIFICANCE: This study may guide the incorporation of CCEPs into intraoperative neurophysiological monitoring.


Asunto(s)
Neoplasias Encefálicas , Potenciales Evocados , Glioma , Lenguaje , Procedimientos Quirúrgicos Mínimamente Invasivos , Humanos , Glioma/cirugía , Glioma/fisiopatología , Masculino , Femenino , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/fisiopatología , Persona de Mediana Edad , Adulto , Anciano , Potenciales Evocados/fisiología , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Estimulación Eléctrica/métodos , Monitorización Neurofisiológica Intraoperatoria/métodos , Corteza Cerebral/fisiopatología , Corteza Cerebral/cirugía , Vigilia/fisiología
5.
Neuropsychologia ; 198: 108876, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38555064

RESUMEN

We retrospectively analyzed data from 15 patients, with a normal pre-operative cognitive performance, undergoing awake surgery for left fronto-temporal low-grade glioma. We combined a pre-surgical measure (fMRI maps of motor- and language-related centers) with intra-surgical measures (MNI-registered cortical sites data obtained during intra-operative direct electrical stimulation, DES, while they performed the two most common language tasks: number counting and picture naming). Selective DES effects along the precentral gyrus/inferior frontal gyrus (and/or the connected speech articulation network) were obtained. DES of the precentral gyrus evoked the motor speech arrest, i.e., anarthria (with apparent mentalis muscle movements). We calculated the number of shared voxels between the lip-tongue and overt counting related- and silent naming-related fMRI maps and the Volumes of Interest (VOIs) obtained by merging together the MNI sites at which a given speech disturbance was observed, normalized on their mean the values (i.e., Z score). Both tongue- and lips-related movements fMRI maps maximally overlapped (Z = 1.05 and Z = 0.94 for lips and tongue vs. 0.16 and -1.003 for counting and naming) with the motor speech arrest seed. DES of the inferior frontal gyrus, pars opercularis and the rolandic operculum induced speech arrest proper (without apparent mentalis muscle movements). This area maximally overlapped with overt counting-related fMRI map (Z = -0.11 and Z = 0.09 for lips and tongue vs. 0.9 and 0.0006 for counting and naming). Interestingly, our fMRI maps indicated reduced Broca's area activity during silent speech compared to overt speech. Lastly, DES of the inferior frontal gyrus, pars opercularis and triangularis evoked variations of the output, i.e., dysarthria, a motor speech disorder occurring when patients cannot control the muscles used to produce articulated sounds (phonemes). Silent object naming-related fMRI map maximally overlapped (Z = -0.93 and Z = -1.04 for lips and tongue vs. -1.07 and 0.99 for counting and naming) with this seed. Speech disturbances evoked by DES may be thought of as selective interferences with specific recruitment of left inferior frontal gyrus and precentral cortex which are differentiable in terms of the specific interference induced.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Estimulación Eléctrica , Imagen por Resonancia Magnética , Habla , Humanos , Masculino , Femenino , Adulto , Habla/fisiología , Persona de Mediana Edad , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Estudios Retrospectivos , Glioma/cirugía , Glioma/diagnóstico por imagen , Glioma/fisiopatología , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Imagen Multimodal
6.
Artículo en Inglés | MEDLINE | ID: mdl-38083627

RESUMEN

Glioblastoma (GBM) is the most aggressive high-grade brain cancer with a median survival time of <15 months. Due to GBMs fast and infiltrative growth patient prognosis is poor with recurrence after treatment common. Investigating GBMs ability to communicate, specifically via Ca2+ signaling, within its functional tumour networks may unlock new therapeutics to reduce the rapid infiltration and growth which currently makes treatment ineffective. This work aims to produce patterned networks of GBM cells such that the Ca2+ communication at a network level can be repeatedly and reliably investigated.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Sistemas Microfisiológicos , Humanos , Encéfalo/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Glioblastoma/patología , Glioblastoma/fisiopatología , Silicio
8.
Nature ; 619(7971): 844-850, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380778

RESUMEN

The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers1,2. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity3-8; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity-dependent infiltrating population present at the leading edge of mouse and human tumours that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified SEMA4F as a key regulator of tumourigenesis and activity-dependent progression. Furthermore, SEMA4F promotes the activity-dependent infiltrating population and propagates bidirectional signalling with neurons by remodelling tumour-adjacent synapses towards brain network hyperactivity. Collectively our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, and also show new mechanisms of glioma progression that are regulated by neuronal activity.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Glioma , Neuronas , Microambiente Tumoral , Humanos , Encéfalo/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Carcinogénesis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Glioblastoma/patología , Glioblastoma/fisiopatología , Glioma/patología , Glioma/fisiopatología , Neuronas/patología , Proliferación Celular , Sinapsis , Progresión de la Enfermedad , Animales , Ratones , Axones , Cuerpo Calloso/patología , Vías Nerviosas
9.
J Neurosurg Sci ; 67(4): 422-430, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33297605

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and deadly glioma subtype. Early growth response 1 (EGR1) participates in the progression of several cancer types, but the expression and function of EGR1 in GBM was rarely investigated. METHODS: The expressions of EGR1 in GBM were detected with qRT-PCR and immunohistochemistry in 12 pairs of fresh GBM tissues and 116 paraffin-embedded specimens. The patients were divided into high and low EGR1 groups according to the IHC score of EGR1, and the prognostic significances of different groups were evaluated with univariate and multivariate analyses. With in-vitro experiments, we assessed the role of EGR1 in the proliferation and invasion of GBM cells. RESULTS: In our study, EGR1 was up-regulated in GBM tissues compared with tumor-adjacent normal tissues. High expression of EGR1 or HMGB1 were unfavorable prognostic biomarkers of GBM. Coexpression of EGR1 and HMGB1 could predict the prognosis of GBM more sensitively. EGR1 facilitated the proliferation and invasion of GBM cells. Moreover, EGR1 promoted the invasion, instead of proliferation, of GBM cells by elevating the expression of HMGB1. CONCLUSIONS: ERG1 was a prognostic biomarker of GBM, and ERG1 and HMGB1 synergistically could predict the GBM prognosis more precisely. ERG1 could promote GBM cell invasion by inducing HMGB1 expression.


Asunto(s)
Neoplasias Encefálicas , Proteína 1 de la Respuesta de Crecimiento Precoz , Glioblastoma , Proteína HMGB1 , Invasividad Neoplásica , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/fisiopatología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Perfilación de la Expresión Génica , Humanos , Análisis Multivariante , Proliferación Celular/genética , Invasividad Neoplásica/genética , Regulación hacia Arriba/genética , Línea Celular Tumoral , Masculino , Femenino , Persona de Mediana Edad , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Biomarcadores de Tumor/genética , Mutación
10.
Exp Brain Res ; 240(12): 3183-3192, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36260096

RESUMEN

Body representation disorders are complex, varied, striking, and very disabling in most cases. Deficits of body representation have been described after lesions to multimodal and sensorimotor cortical areas. A few studies have reported the effects of tumors on the representation of the body, but little is known about the changes after tumor resection. Moreover, the impact of brain lesions on the hand size representation has been investigated in few clinical cases. Hands are of special importance, as no other body part has the ability for movement and interaction with the environment that the hands have, and we use them for a multitude of daily activities. Studies with clinical population can add further knowledge into the way hands are represented. Here, we report a single case study of a patient (AM) who was an expert bodybuilder and underwent a surgery to remove a glioblastoma in the left posterior prefrontal and precentral cortex at the level of the hand's motor region. Pre- (20 days) and post- (4 months) surgery assessment did not show any motor or cognitive impairments. A hand localization task was used, before and after surgery (12 months), to measure possible changes of the metric representation of his right hand. Results showed a post-surgery modulation of the typically distorted hand representation, with an overall accuracy improvement, especially on width dimension. These findings support the direct involvement of sensorimotor areas in the implicit representation of the body size and its relevance on defining specific size representation dimensions.


Asunto(s)
Imagen Corporal , Neoplasias Encefálicas , Glioblastoma , Mano , Procedimientos Neuroquirúrgicos , Corteza Sensoriomotora , Humanos , Imagen Corporal/psicología , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/psicología , Neoplasias Encefálicas/cirugía , Mano/fisiopatología , Movimiento/fisiología , Corteza Sensoriomotora/fisiopatología , Glioblastoma/fisiopatología , Glioblastoma/psicología , Glioblastoma/cirugía , Procedimientos Neuroquirúrgicos/efectos adversos , Procedimientos Neuroquirúrgicos/psicología , Tamaño Corporal
11.
Sci Data ; 9(1): 453, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906241

RESUMEN

Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Genómica , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/fisiopatología , Humanos , Imagen por Resonancia Magnética , Pronóstico
12.
Acta Neurochir (Wien) ; 164(8): 1995-2008, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35420374

RESUMEN

OBJECTIVE: To report our experience and investigate frequencies of adverse events and functional status from the first 5 years of performing awake surgery for gliomas in a single-center population-based setting. METHODS: We conducted a review of all patients with a glioma treated with awake surgery during the first 5 years following introduction of awake surgery at our center (February 2015 to February 2020). We assessed functional and radiological outcome, with adverse events classified according to the Landriel-Ibanez classification for neurosurgical complications, while neurological deficits were further subdivided into transient vs permanent. We sought to analyze our initial results and learning curve, as well as compare our results with literature. RESULTS: Forty-two patients were included. The median age was 38 years (range 18-66) and 13 (31%) were female. The indication for awake surgery was a presumed glioma in or near an eloquent area. The overall 30-day complication rate was 25 (59%), with 19 (45%) grade I complications, 3 (7%) grade II complications, and 3 (7%) grade III complications. Fifteen patients (36%) experienced transient neurological deficits, and 11 (26%) permanent neurological deficits. At 3-month follow-up, the Karnofsky Performance Score was 80 or higher for the entire cohort. The median extent of resection was 87%, with GTR achieved in 11 (26%). In search of potential learning curve difficulties, patients were divided into the 21 patients treated first (Early Group) versus the remaining 21 patients treated later (Late Group); no statistically significant difference in operating time, amount of tumor removed, or incidence of long-term postoperative neurological deficit was identified between groups. No awake surgery was aborted due to seizures. Comparison to the literature was limited by the diverse and unsystematic way in which previous studies have reported adverse events after awake craniotomy for gliomas. CONCLUSION: We provide a standardized report of adverse events and functional status following awake surgery for glioma during a single-center 5-year learning period, with similar rates of severe adverse events and functional outcome compared to literature without concerns of substantial learning curve difficulties. However, this comparison was flawed by non-standardized reporting of complications, highlighting a demand for more standardized reporting of adverse events after awake craniotomies.


Asunto(s)
Neoplasias Encefálicas , Craneotomía , Glioma , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Craneotomía/efectos adversos , Craneotomía/métodos , Femenino , Estado Funcional , Glioma/fisiopatología , Glioma/cirugía , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Vigilia , Adulto Joven
13.
Eur J Pediatr ; 181(7): 2731-2740, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35476292

RESUMEN

Long-term sequelae are well-known in childhood brain tumor survivors, but motor functioning remains poorly described. This cross-sectional study aimed to assess objective motor functioning, patient-specific risk factors, and parental perceptions. Fifty-two childhood brain tumor patients (pilocytic astrocytoma, medulloblastoma, and other types) who were at least 6 months out of treatment were evaluated. Mean age at testing was 11.7 years. Objective motor functioning was assessed with the Movement Assessment Battery for Children (MABC-2-NL) and/or Bruininks-Oseretsky test of motor proficiency (BOT-2). Functional walking capacity was assessed with the 6-min walk test (6MWT). Parent-reported motor functioning was addressed using the ABILHAND-Kids, ABILOCO-Kids questionnaires, and a standardized anamnesis. Patients showed impaired motor functioning in all domains (p < 0.001). Regarding risk factors, younger age at diagnosis (< 5 year) was significantly associated with lower scores on body coordination (p = 0.006). Adjuvant treatment resulted in lower scores for fine manual control of the BOT-2 (p = 0.024) and balance of MABC-2-NL (p = 0.036). Finally, questionnaires revealed an underestimation of motor problems as perceived by the parents. In conclusion, many children who are in follow-up for a brain tumor show impaired motor functioning on multiple aspects, with younger age at diagnosis and adjuvant treatment as specific risk factors. Based on the questionnaires and anamnesis, motor problems appear to be underestimated by the parents.  Conclusion: These findings point to the need for timely prospective screening of motor functioning. Based on a screening assessment, adequate rehabilitation programs can be applied in childhood brain tumor survivors, aiming to reduce the adverse impact on their daily lives, both for functional activities and cardiovascular fitness. What is Known: • A pediatric brain tumor and its treatment are associated with potential long-term motor sequelae. • Test assessments could enable us to objectify motor functioning of these patients. What is New: • Pediatric brain tumors survivors show lower motor performance compared to the norm, which is often underestimated by parents. • Younger age at diagnosis and adjuvant treatment could be specific risk factors.


Asunto(s)
Neoplasias Encefálicas , Supervivientes de Cáncer , Trastornos Motores , Cuidados Posteriores , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/terapia , Supervivientes de Cáncer/estadística & datos numéricos , Niño , Estudios Transversales , Humanos , Trastornos Motores/diagnóstico
14.
Eur J Med Res ; 27(1): 42, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305692

RESUMEN

BACKGROUND: Cerebral intraparenchymal masses represent usually a neoplastic, or infectious differential diagnostic workup in neurology or infectious disease units. CASE PRESENTATION: Our patient was an 82-year-old male presenting with seizures, cerebral masses and a history of past treated pulmonary tuberculosis. Initial workup included a differential diagnosis of an infectious mass/multiple abscess. After exclusion of infectious or primary neoplastic origins by negative HIV serology, the absence of immune suppression, endocarditic lesions, negative results of blood cultures and bronchoalveolar lavage, negative cerebrospinal fluid workout on spinal tap led to exclusion of infectious causes. A surgical procedure was performed to access one of the lesions. This yielded a firm, cyst-like mass of histiocytic granulomatous tissue with a conspicuous plasmacellular component and a relevant IgG4 plasmacellular component consistent with IgG4-related disease. Steroid treatment determined conspicuous improvement and led to discharge of the patient. CONCLUSION: Parenchymal IgG4-related disease may be included as a new entity in the differential diagnosis of single or multiple cerebral masses in addition to infectious or neoplastic etiology.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatología , Diagnóstico Diferencial , Enfermedad Relacionada con Inmunoglobulina G4/diagnóstico , Enfermedad Relacionada con Inmunoglobulina G4/fisiopatología , Enfermedad Relacionada con Inmunoglobulina G4/cirugía , Tejido Parenquimatoso/fisiopatología , Anciano , Humanos , Masculino
15.
Sci Rep ; 12(1): 2341, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149717

RESUMEN

The growth of glioblastoma (GBM), one of the deadliest adult cancers, is fuelled by a subpopulation of stem/progenitor cells, which are thought to be the source of resistance and relapse after treatment. Re-engagement of a latent capacity of these cells to re-enter a trajectory resulting in cell differentiation is a potential new therapeutic approach for this devastating disease. ASCL1, a proneural transcription factor, plays a key role in normal brain development and is also expressed in a subset of GBM cells, but fails to engage a full differentiation programme in this context. Here, we investigated the barriers to ASCL1-driven differentiation in GBM stem cells. We see that ASCL1 is highly phosphorylated in GBM stem cells where its expression is compatible with cell proliferation. However, overexpression of a form of ASCL1 that cannot be phosphorylated on Serine-Proline sites drives GBM cells down a neuronal lineage and out of cell cycle more efficiently than its wild-type counterpart, an effect further enhanced by deletion of the inhibitor of differentiation ID2, indicating mechanisms to reverse the block to GBM cell differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatología , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Proteína 2 Inhibidora de la Diferenciación/genética , Células Madre Neoplásicas/metabolismo , Secuencias de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Encefálicas/genética , Ciclo Celular , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Células Madre Neoplásicas/citología , Fosforilación
16.
Anticancer Res ; 42(3): 1641-1644, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35220263

RESUMEN

BACKGROUND: To preserve language function, intraoperative functional brain mapping (IFBM) in and near the speech center is essential. CASE REPORT: We present a case of a 73-year-old right-handed woman with colon cancer. She presented with mild speech disturbance. Magnetic resonance imaging revealed a ringed enhancing lesion in the frontal operculum. The preservation of language function was critical; therefore, she underwent awake craniotomy using IFBM. Thus, the speech site was elicited by cortical electrical stimulation at the surface, near the location of the tumor. We made a safe corticotomy on the surface of the lesion and performed the resection of brain metastasis (BM) via a safety corridor. We achieved gross total resection of the BM while preserving the language function. After surgery, she recovered from speech disturbance. She returned to her normal life with improved language function. CONCLUSION: IFBM is a useful tool to undertake a safe approach via the speech center, avoiding permanent language deficits.


Asunto(s)
Neoplasias Encefálicas/cirugía , Corteza Cerebral/fisiopatología , Neoplasias del Colon/patología , Craneotomía , Monitorización Neurofisiológica Intraoperatoria , Trastornos del Habla/fisiopatología , Habla , Anciano , Mapeo Encefálico , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/secundario , Corteza Cerebral/diagnóstico por imagen , Estado de Conciencia , Estimulación Eléctrica , Femenino , Humanos , Imagen por Resonancia Magnética , Recuperación de la Función , Trastornos del Habla/etiología , Resultado del Tratamiento , Vigilia
17.
Nat Commun ; 13(1): 328, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039507

RESUMEN

Historically, the study of patients with spatial neglect has provided fundamental insights into the neural basis of spatial attention. However, lesion mapping studies have been unsuccessful in establishing the potential role of associative networks spreading on the dorsal-medial axis, mainly because they are uncommonly targeted by vascular injuries. Here we combine machine learning-based lesion-symptom mapping, disconnection analyses and the longitudinal behavioral data of 128 patients with well-delineated surgical resections. The analyses show that surgical resections in a location compatible with both the supplementary and the cingulate eye fields, and disrupting the dorsal-medial fiber network, are specifically associated with severely diminished performance on a visual search task (i.e., visuo-motor exploratory neglect) with intact performance on a task probing the perceptual component of neglect. This general finding provides causal evidence for a role of the frontal-medial network in the voluntary deployment of visuo-spatial attention.


Asunto(s)
Atención/fisiología , Percepción Espacial/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología , Adulto , Conducta , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Estudios de Casos y Controles , Femenino , Glioma/fisiopatología , Glioma/cirugía , Humanos , Masculino , Máquina de Vectores de Soporte , Sustancia Blanca/cirugía
18.
J Cereb Blood Flow Metab ; 42(3): 526-539, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-32787542

RESUMEN

Functional magnetic resonance imaging (fMRI) has been mainly utilized for the preoperative localization of eloquent cortical areas. However, lesion-induced impairment of neurovascular coupling (NVC) in the lesion border zone may lead to false-negative fMRI results. The purpose of this study was to determine physiological factors impacting the NVC. Twenty patients suffering from brain lesions were preoperatively examined using multimodal neuroimaging including fMRI, magnetoencephalography (MEG) during language or sensorimotor tasks (depending on lesion location), and a novel physiologic MRI approach for the combined quantification of oxygen metabolism, perfusion state, and microvascular architecture. Congruence of brain activity patterns between fMRI and MEG were found in 13 patients. In contrast, we observed missing fMRI activity in perilesional cortex that demonstrated MEG activity in seven patients, which was interpreted as lesion-induced impairment of NVC. In these brain regions with impaired NVC, physiologic MRI revealed significant brain tissue hypoxia, as well as significantly decreased macro- and microvascular perfusion and microvascular architecture. We demonstrated that perilesional hypoxia with reduced vascular perfusion and architecture is associated with lesion-induced impairment of NVC. Our physiologic MRI approach is a clinically applicable method for preoperative risk assessment for the presence of false-negative fMRI results and may prevent severe postoperative functional deficits.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Microvasos/diagnóstico por imagen , Neuroimagen/métodos , Acoplamiento Neurovascular/fisiología , Adulto , Anciano , Neoplasias Encefálicas/patología , Femenino , Humanos , Hipoxia/fisiopatología , Masculino , Microvasos/patología , Persona de Mediana Edad , Imagen Multimodal
19.
Clin Neurophysiol ; 133: 165-174, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774442

RESUMEN

OBJECTIVE: High frequency oscillations (HFOs) in intraoperative electrocorticography (ioECoG) are thought to be generated by hyperexcitable neurons. Inflammation may promote neuronal hyperexcitability. We investigated the relation between HFOs and inflammation in tumor-related epilepsy. METHODS: We identified HFOs (ripples 80-250 Hz, fast ripples 250-500 Hz) in the preresection ioECoG of 32 patients with low-grade tumors. Localization of recorded HFOs was classified based on magnetic resonance imaging reconstructions: in tumor, in resected non-tumorous area and outside the resected area. We tested if the following inflammatory markers in the tumor or peritumoral tissue were related to HFOs: activated microglia, cluster of differentiation 3 (CD3)-positive T-cells, interleukin 1-beta (IL1ß), toll-like receptor 4 (TLR4) and high mobility group box 1 protein (HMGB1). RESULTS: Tumors that generated ripples were infiltrated by more CD3-positive cells than tumors without ripples. Ripple rate outside the resected area was positively correlated with IL1ß/TLR4/HMGB1 pathway activity in peritumoral area. These two areas did not directly overlap. CONCLUSIONS: Ripple rates may be associated with inflammatory processes. SIGNIFICANCE: Our findings support that ripple generation and spread might be associated with synchronized fast firing of hyperexcitable neurons due to certain inflammatory processes. This pilot study provides arguments for further investigations in HFOs and inflammation.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Ondas Encefálicas/fisiología , Encéfalo/fisiopatología , Epilepsia/fisiopatología , Enfermedades Neuroinflamatorias/fisiopatología , Adolescente , Adulto , Encéfalo/cirugía , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/cirugía , Niño , Preescolar , Electrocorticografía , Epilepsia/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neuroinflamatorias/etiología , Adulto Joven
20.
J Neurooncol ; 156(1): 185-193, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34817796

RESUMEN

PURPOSE: Impaired neurocognitive function (NCF) is extremely common in patients with higher grade primary brain tumor. We previously reported evidence of genetic variants associated with NCF in glioma patients prior to treatment. However, little is known about the effect of genetic variants on NCF decline after adjuvant therapy. METHODS: Patients (N = 102) completed longitudinal NCF assessments that included measures of verbal memory, processing speed, and executive function. Testing was conducted in the postoperative period with an average follow up interval of 1.3 years. We examined polymorphisms in 580 genes related to five pathways (inflammation, DNA repair, metabolism, cognitive, and telomerase). RESULTS: Five polymorphisms were associated with longitudinal changes in processing speed and 14 polymorphisms with executive function. Change in processing speed was strongly associated with MCPH1 rs17631450 (P = 2.2 × 10-7) and CCDC26 rs7005206 (P = 9.3 × 10-7) in the telomerase pathway; while change in executive function was more strongly associated with FANCF rs1514084 (P = 2.9 × 10-6) in the DNA repair pathway and DAOA rs12428572 (P = 2.4 × 10-5) in the cognitive pathway. Joint effect analysis found significant genetic-dosage effects for longitudinal changes in processing speed (Ptrend = 1.5 × 10-10) and executive function (Ptrend = 2.1 × 10-11). In multivariable analyses, predictors of NCF decline included progressive disease, lower baseline NCF performance, and more at-risk genetic variants, after adjusting for age, sex, education, tumor location, histology, and disease progression. CONCLUSION: Our longitudinal analyses revealed that polymorphisms in telomerase, DNA repair, and cognitive pathways are independent predictors of decline in NCF in glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Trastornos Neurocognitivos , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Reparación del ADN/genética , Glioma/genética , Glioma/fisiopatología , Humanos , Estudios Longitudinales , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/fisiopatología , Pruebas Neuropsicológicas , Polimorfismo Genético , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA